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Supplementary Fig.1
Mouse and human pericytes respond to TLR ligands, kidney DAMPs and histones
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(A-B) MyD88 expression by 4 different cell types in the kidney in vivo (A) and TLR2, TLR4
and MyD88 expression in kidney pericytes (B) in vivo isolated by TRAP and detected by
microarray. Dotted line designates the level of detection. (C) IL6 or MCP1 secretion by mouse
kidney pericytes in response to different TLR ligands (D) Transcriptional response to

LPS or (E) kidney DAMPs by human pericytes. (F) Secretion of IL-6 by human pericytes

in response to LPS, kidney DAMPs or histones. (G) Transript levels for TLR2 and TLR4
48h following specific or scrambled siRNA (H) Transcript levels for 116 and Ccl2 in pericytes
and primary mouse proximal epithelium in control and DAMPs activated conditions.

() Secretion of IL-6 and MCP-1 by kidney pericytes or Bone marrow derived macrophages
in culture in response to kidney DAMPs. (n = 3-5/group; *P < 0.05; 2 tailed Student’s t-test
or ANOVA with Bonferroni’s correction).



Supplementary Fig.2
Characterization of DAMPs
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(A,B) Secretion of IL-6 and MCP-1 by kidney pericytes in culture in response to

kidney DAMPs following pre-treatment with nucleases or proteinases. (C) Composition of
kidney IRl DAMPs by cellular compartment. (D) Pathways enriched in kidney IRl DAMPs.
(E) Most enriched protein groups (n = 3-6/group; * P < 0.05, one way ANOVA with
Bonferroni’s correction).



Supplementary Fig.3
Role of 11 & lI1r1 in pericytes
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(A-B) Expression of //1r1 in multiple cell types (A) and specifically in kidney pericytes

(B) in vivo purified by TRAP and analyzed by microarray in healthy or 24h post-IRI

kidneys. Dotted line designates the level of detection.

(C-E) Expression of 116, Acta2 and Col1a1 in pericytes treated with IL-1p for 24 hours.

(F) Migration of kidney pericytes in response to IL-18 at 24 hours. (G-H) Impact of scrambled
or ll1r1-specific siRNA on pericyte levels of Col1a1 or ActaZ2 transcripts 24 hours after
treatment with either vehicle or DAMPs . (I-J) Impact of IL1RA or anti-TGFp antibody on
levels of /16 or Acta2, 24 hours after treatment with TGFp. (n = 3-5/group; *P < 0.05; 2 tailed
Student’s t-test or one way ANOVA with Bonferroni’s correction).



Supplementary Fig.4

Human kidney pericytes respond to TGFp, kidney DAMPs or histones and this response is
controlled by MYD88

A Profibrotic gene B C
expression ACTA2 COL1A1
3 M Veh 25 * 25
<Z< * M DAMPs <2(2.0 <z:2.0 -
® 2 W TGFB %5 s
2 2 e
E 1 % 1.0 % 1.0
& x 0.5 x 0.5
0 0.0 0.0
S TGFB— + + TGFB— + +
Y MyD88 _ _ . MyD88 _ _ 4
inhibitor inhibitor

(A) Expression of myofibroblast differentiation markers ACTA2 and COL1A1 in response
to TGFp or kidney DAMPs. (B-C) Transcription of ACTA2 and COL1A1 following TGFp
and MYD88 inhibitor treatments. (n = 3/group; * P < 0.05, 2 tailed Student’s t-test or

one way ANOVA with Bonferroni’s correction).



Supplementary Fig. 5

Crosstalk between TLR2/4 and MYD88 profibrotic signaling occuring at the receptor level but
not by regulaing Bambi or Smad7
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(A-B) Transcription of Bambi and Smad7 in mouse kidney pericytes stimulated with TGFp
or kidney DAMPs for 24 hours. (C) Effect of TGFBR1/2 inhibitor on TGF and DAMPs
mediated expression of COL71A7 in human pericytes (D) Western blotting with MyD88,
TGFBR1, pTGFBR1, JNK or pJNK antibodies showing the effect of TGFp treatment on
control (scrambled siRNA) or MyD88 knock-down mouse kidney pericytes.

(n = 3/group; * P < 0.05; 2-tailed Student’s t-test).



Supplementary Figure 6

Generation and characterization of the mouse strain with pericyte-specific
deletion of MyD88
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(A) Schematic showing targeting strategy of the Foxd1 locus with insertion of the GFP-Cre fusion protein and the
Myd88 locus with loxP sites flanking exon 3. (B) Agarose gel showing PCR amplified bands across Myd88 exon 3
from whole kidney, 5d post-IRI. 526 bp fragment represents wild-type floxed exon 3, 145 bp band - the deleted exon 3.
(C) Representative images of PAS stained sections of adult kidney cortex showing normal histology.

(D) Representative low magnification images of normal kidney and diseased kidney stained for the myofibroblast
marker aSMA (bar = 50um). (E) Table showing the impact of MyD88 deficiency in the epithelium of the kidney
(Six2Cre) or in the myeloid lineage (Csf1RiCre) on cytokines, markers of epithelial injury, fibroblast activation, and
macrophage accumulation. (F) PCR (left) and Western blots (right) showing levels of MyD88 in primary epithelial
cultures and primary macrophage cultures from mice with the genotypes stated.(LPS at 100ng/ml for 24h (vertical line
denotes splicing of original blot) (bar = 50um, *P < 0.05, n= 6/group).
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Supplementary Figure 7
Irak4 expression in the kidney and experiments to test inhibition by BlIB-IRAK4i in vivo.
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(A-B) Irak4 expression in pericytes, macrophages, endothelial and epithelial cells from healthy or 24h
post-IRI kidneys detected by microarrays using TRAP. (B) Dotted line designates the level of detection.
(C-E) In vivo study design (contralateral nephrectomy = C/L Nx) and experimental groups (groups 1-4,
end point d7, and groups 5-8 end point d16) (n=3-11/group).



Supplementary Figure 8
Specificity and potency of the small molecule IRAK4 inhbitor BIIB-IRAK4i
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(A) Results of an in vitro biochemical assay measuring inhibition of recombinant IRAK4 phosphorylation by
BIIB-IRAK4i (IRAK4 was inhibited at an IC50 of 1nM, IRAK1 was inhibited with an IC50 120 fold higher.) and
a Biocore binding assay where the Kd for IRAK4 was 0.034nM but 230 fold higher for IRAK1.

(B) Phylogenetic tree of the human kinome showing 456 kinases that were evaluated using the

DiscoveRx kinase panel in inhibitory testing for BIIB-IRAK4i. Kinase groups are: TKL (tyrosine kinase like), TK
(tyrosine kinase); STE (homologs of yeast sterile 7, 11), CK1 (Casein kinase 1), AGC (containing PKA, PKG,
PKC families) CAMK (calcium/calmodulin dependent), CMGC (containing CDK, MAPK, GSK3, CLK families).
BIIB-IRAK4i inhibited 7 kinases (shown as circles) by >90% at 1uM (S-Score(10) = 0.02). Circle size
represents the amount of inhibition. BIIB-IRAK4i showed the highest inhibition of IRAK4 with a second ranked
inhibition of IRAK1. (C) Plasma concentration of BIIB-IRAK4i in mice given single oral dose of BIIB-IRAK4i as
indicated at 50, 100 and 200 mg/ kg...(D) Pharmacokinetic parameters of BlIB-IRAK4i in male C57BL/6 mice
following an oral dose of 50, 100, 200 mg/kg. The inhibitor is formulated in 50% PEG/Citric Acid. n=3 mice per group.



Supplementary Figure 9
Inhibition of disease progression by BIIB-IRAK4i in vivo.
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(A) Experimental design for 14-day study of kidney U-IRI. (B) Experimental groups (C) Transcriptional

levels of inflammatory (Ccl2, 1/1B), tissue injury (Kim1) and fibrotic markers (Acta2 and Col1a1)

(D) Experimental design for 7-day U-IRI with therapeutic administration of IRAK4 inhibitor (E) Experimental groups.
(F) Transcriptional levels of the inflammatory (//6, Ccl2, II1p) tissue injury (Kim1), and fibrotic markers (Col1a1)

(* P <0.05, n=3-11/group, 2 tailed Student'’s t-test or one way ANOVA with Bonferroni’s correction).



Supplemental Table 1
List of pathways enriched in human acute kidney injury



Supplemental Table 2
List of pathways enriched in myofibroblasts



Supplemental Table 2 (continued)



Supplemental Table 3
List of Tagman Gene Expression Assays used for transcript quantification



Supplemental Table 4
List of siRNAs
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