The dormancy‐specific regulator, SutA, is intrinsically disordered and modulates transcription initiation in Pseudomonas aeruginosa

M Bergkessel, BM Babin, D VanderVelde… - Molecular …, 2019 - Wiley Online Library
Molecular microbiology, 2019Wiley Online Library
Though most bacteria in nature are nutritionally limited and grow slowly, our understanding
of core processes like transcription comes largely from studies in model organisms doubling
rapidly. We previously identified a small protein of unknown function, SutA, in a screen of
proteins synthesized in Pseudomonas aeruginosa during dormancy. SutA binds RNA
polymerase (RNAP), causing widespread changes in gene expression, including
upregulation of the ribosomal RNA genes. Here, using biochemical and structural methods …
Summary
Though most bacteria in nature are nutritionally limited and grow slowly, our understanding of core processes like transcription comes largely from studies in model organisms doubling rapidly. We previously identified a small protein of unknown function, SutA, in a screen of proteins synthesized in Pseudomonas aeruginosa during dormancy. SutA binds RNA polymerase (RNAP), causing widespread changes in gene expression, including upregulation of the ribosomal RNA genes. Here, using biochemical and structural methods, we examine how SutA interacts with RNAP and the functional consequences of these interactions. We show that SutA comprises a central α‐helix with unstructured N‐ and C‐terminal tails, and binds to the β1 domain of RNAP. It activates transcription from the rrn promoter by both the housekeeping sigma factor holoenzyme (Eσ70) and the stress sigma factor holoenzyme (EσS) in vitro, but has a greater impact on EσS. In both cases, SutA appears to affect intermediates in the open complex formation and its N‐terminal tail is required for activation. The small magnitudes of in vitro effects are consistent with a role in maintaining activity required for homeostasis during dormancy. Our results add SutA to a growing list of transcription regulators that use their intrinsically disordered regions to remodel transcription complexes.
Wiley Online Library