Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling
Ralf Küppers, … , Martin-Leo Hansmann, Riccardo Dalla-Favera
Ralf Küppers, … , Martin-Leo Hansmann, Riccardo Dalla-Favera
Published February 15, 2003
Citation Information: J Clin Invest. 2003;111(4):529-537. https://doi.org/10.1172/JCI16624.
View: Text | PDF
Categories: Article Oncology

Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling

  • Text
  • PDF
Abstract

Hodgkin lymphoma (HL) is a malignancy of unknown pathogenesis. The malignant Hodgkin and Reed/Sternberg (HRS) cells derive from germinal center B cells (or rarely, T cells) but have a heterogeneous and largely uncharacterized phenotype. Using microarrays, we compared the gene expression profile of four HL cell lines with profiles of the main B cell subsets and B cell non-HLs to find out whether HRS cells, despite their described heterogeneity, show a distinct gene expression, to study their relationship to other normal and malignant B cells, and to identify genes aberrantly or overexpressed by HRS cells. The HL lines indeed clustered as a distinct entity, irrespective of their B or T cell derivation, and their gene expression was most similar to that of EBV-transformed B cells and cell lines derived from diffuse large cell lymphomas showing features of in vitro–activated B cells. Twenty-seven genes, most of which were previously unknown to be expressed by HRS cells, showed aberrant expression specifically in these cells, e.g., the transcription factors GATA-3, ABF1, EAR3, and Nrf3. For five genes, expression in primary HRS cells was confirmed. The newly identified HL-specific genes may play important roles in the pathogenesis of HL, potentially represent novel diagnostic markers, and can be considered for therapeutic targeting.

Authors

Ralf Küppers, Ulf Klein, Ines Schwering, Verena Distler, Andreas Bräuninger, Giorgio Cattoretti, Yuhai Tu, Gustavo A. Stolovitzky, Andrea Califano, Martin-Leo Hansmann, Riccardo Dalla-Favera

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
The gene expression profile of HL lines is related to that of LCL and AB...
The gene expression profile of HL lines is related to that of LCL and ABC-type DLCL. Dendrogram showing the hierarchical clustering of gene expression data (see Methods for algorithm and criteria) generated from 23 transformed B cell lines derived from HL, DLCL, BL, and EBV-transformed peripheral blood B cells (LCL). Cell lines are color-coded according to their cellular origin: DLCL, red; BL, blue; HL, green; LCL, violet. If known, the EBV status is indicated in brackets. ABC- or GC-type DLCL-subtypes are indicated. The corresponding matrix is shown in supplementary Figure 1 (http://www.jci.org/cgi/content/full/111/4/529/DC1).
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts